Sliding Window Maximum
239. Sliding Window Maximum
	You are given an array of integers nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position.
Return the max sliding window.
Example 1:
Input: nums = [1,3,-1,-3,5,3,6,7], k = 3
Output: [3,3,5,5,6,7]
Explanation: 
Window position                Max
---------------               -----
[1  3  -1] -3  5  3  6  7       3
 1 [3  -1  -3] 5  3  6  7       3
 1  3 [-1  -3  5] 3  6  7       5
 1  3  -1 [-3  5  3] 6  7       5
 1  3  -1  -3 [5  3  6] 7       6
 1  3  -1  -3  5 [3  6  7]      7
Example 2:
Input: nums = [1], k = 1
Output: [1]
Constraints:
- 1 <= nums.length <= 105
- -104 <= nums[i] <= 104
- 1 <= k <= nums.length
Analysis
We can use the monotonic stack to resolve the problem. We use a stack named s which store the unresolved index,
- we compare the current height height[i]with the top of stacks[-1]. Ifheight[i] > s[-1], it means we cound find a target trap, we can pop the index from the stack twice and calculate the trap area; then continue the next round until one of bellow condition meet:- The stack is empty
- The height of stack’s top is bigger than height[i]
 
- If it’s less, then we should just push the current index.
Solutions
1. Monotanic-Stack
class Solution:
    def maxSlidingWindow(self, nums: List[int], k: int) -> List[int]:
        s = []
        n = len(nums)
        
        ans = 0
       	q = deque()
        for i in range(n):
            while q and q[-1] <= nums[i]:
                q.pop()
            q.append(i)
        	if i - q[0] >= k:
               q.popleft()
            if i > k:
            	ans.append(nums[q[0]])
        return ans
Input:   [0,1,0,2,1,0,1,3,2,1,2,1]
output:
6
Complexity
- Time complexity: ( O(n) ), where ( n ) is the length of the array.
- Space complexity: ( O(n) ), where ( n) is the length of the array.
链接:https://ac.nowcoder.com/acm/contest/1006/D 来源:牛客网
题目描述
输入一个长度为n的整数序列,从中找出一段不超过m的连续子序列,使得整个序列的和最大。 例如 1,-3,5,1,-2,3 当m=4时,S=5+1-2+3=7 当m=2或m=3时,S=5+1=6
输入描述:
第一行两个数n,m(n,m≤300000)(n,m \leq 300000)(n,m≤300000)
第二行有n个数,要求在n个数找到最大子序和
输出描述:
一个数,数出他们的最大子序和
示例1
输入
6 4
1 -3 5 1 -2 3
输出
7
 
      
    
Comments